• OA系统
  • 图书馆
  • English
  • 中国科学院
  • 首页
  • 所况简介
    所况简介
    1964年,为落实国家声学规划,满足国家迫切需要,形成全国声学学科研究中心,经国务院副总理聂荣臻元帅批准,成立中国科学院声学研究所(以下简称声学所),将原中科院电子所的水声、超声、建筑声3个实验室,1958年成立的南海研究站、1960年成立的东海研究站、1961年成立的北海研究站整体纳入声学所。声学所是从事声学和信息处理技术研究的综...
    了解更多+
    现任领导
    李风华
    所长
    倪 宏
    党委书记、副所长
    李明庚
    副所长(正局级)
    李浩然
    党委副书记、纪委书记
    杨 军
    副所长
  • 机构设置
    领导机构
    所务会 党委会
    咨询机构
    科技委员会 学位评定委员会
    职能部门
    综合办公室 党委办公室 人力资源部 科技发展部 重大任务部 财务管理部 资产条件保障部 质量管理部 保密办公室 监督审计(纪委)办公室
    研究站
    南海研究站 东海研究站 北海研究站
    挂靠机构
    中国声学学会 全国声学标准化委员会 中科院声学计量站(CMA)
    研究单元
    声场声信息实验室
    水下环境信息感知实验室
    水下信息技术实验室
    海洋声学技术实验室
    水下航行器实验室
    超声学实验室
    噪声与音频声学实验室
    智能网络与信息处理技术实验室
    语音与智能信息处理实验室
  • 科研成果
    研究领域
    经过五十多年的发展,声学所形成了独具特色的六大研究领域:水声物理与水声探测技术、环境声学与噪声控制技术、超声学与声学微机电技术、通信声学和语言语音信息处理技术、声学与数字系统集成技术、高性能网络与网络新媒体技术。 【详情】
    成果概况
    获奖
    论文
    专利
    专著
    科研进展
    基于频域卷积传递函数的盲源分离研究获得进展
    2022-03-18
    中国科学院噪声与振动重点实验室Lab9_DSP411团队在ICASSP 2022 L3DAS22 Challenge中夺冠
    2022-03-14
    无线无源声表面波应变传感技术获得新突破
    2022-01-25
    研究人员揭示超声波对重油黏度和化学结构影响的机理
    2022-01-25
    研究人员利用深度学习进行乳腺肿瘤超声智能诊断
    2022-01-18
    声表面波快速氢气传感技术获得新进展
    2022-01-18
    产品展示
  • 人才队伍
    院士专家
    汪德昭
    马大猷
    应崇福
    张仁和
    侯朝焕
    李启虎
    汪承灏
    人才招聘
    更多+
    中国科学院声学研究所2022年科技、支撑类岗位招聘启事
    2022-06-27
    中国科学院声学研究所2022年面向国内外招聘特别研究助理(博士后)研究人员
    2022-06-26
    中科院声学所财务管理部高技术核算会计岗招聘启事
    2022-06-25
    中科院声学所超声学实验室科技类岗位招聘启事
    2022-06-16
    中科院声学所党委办公室党务助理岗位招聘启事
    2022-06-05
    正高级专业技术岗位
    副高级专业技术岗位
    中科院青年创新促进会会员
    特别研究助理及博士后管理
  • 研究生教育
  • 党建与文化
    活动报道
    更多+
    水下环境信息感知党支部开展庆祝建党101周年主题党日活动
    2022-07-01
    噪声与音频声学党总支召开党员大会暨开展主题党日活动
    2022-07-01
    超声学党总支召开党员大会暨开展主题党日学习活动
    2022-06-21
    水下环境信息感知实验室开展迎五一《传承》(二)摄影作品征集活动
    2022-06-15
    水下信息技术团支部开展主题团日活动
    2022-06-07
    声学所党委理论学习中心组专题学习《工会法》《信访工作条例》
    2022-05-09
    文化副刊
    诗歌
    书画
    摄影
    散文
  • 交流合作
    学术交流
    更多+
    声学所举行2022年第5期学术交流会
    2022-06-28
    声学所举办张仁和院士专场学术交流报告
    2022-03-25
    北京市海洋深部钻探测量工程技术研究中心第一届技术委员会第五次会议圆满召开
    2022-03-22
    声学所举行2022年国家自然基金预评审会
    2022-03-11
    声学所举行2022年第3期学术交流会
    2022-02-22
    科技合作
    更多+
    河南濮阳市科技局一行来访超声学实验室
    2022-03-15
    中国科学院声学研究所与国机集团合肥通用机械研究院有限公司签署战略合作协议
    2022-03-07
    中关村科学城管委会调研声学所
    2021-12-14
    中科院声学所南海研究站与恒锋信息科技股份有限公司共建“智能语音与人工智能联合实验室”
    2021-09-08
    “浙企中科行”一行到访北海研究站
    2021-07-23
    国际会议
    更多+
  • 科学传播
    工作动态
    更多+
    “爱科学,向未来”——声学所举办第十八届公众科学日线上活动
    2022-06-20
    声学所举办“红领巾寻访红色印记”科普活动
    2022-04-18
    关爱听力健康,聆听精彩未来——声学所与中关村一小联合开展2022年“全国爱耳日”科普活动
    2022-03-04
    声学所三位研究生获评中国科普作家协会2021年“科普科幻青年之星”
    2021-11-26
    杨军研究员作“听不见的声音”科普报告
    2021-10-22
    科技期刊
    科普文章
    更多+
    科普文章丨耳机里的声音为什么会有方向感?
    科普文章丨嘿,siri!嘈杂的酒吧里,AI为什么听不懂指令?
    科普文章丨神奇的主动降噪技术
    科普视频
    更多+
    科普视频丨杨波:揭秘“深海勇士号”载人潜水器
    科普视频丨声音的奥秘
    科普视频丨真空无法传声科普实验
    科普视频丨借声波一臂之力探神秘海底世界
  • 信息公开
    信息公开规定
    信息公开指南
    信息公开目录
    信息公开申请
    信息公开年度报告
    信息公开联系方式
  • 首页
  • 所况简介
    • 机构简介
    • 所长致辞
    • 现任领导
    • 历任主要领导
      • 历任所长
      • 历任党委书记
    • 院所风貌
  • 机构设置
    • 党的委员会
    • 科技委员会
    • 学位委员会
    • 组织机构
      • 领导机构
      • 咨询机构
      • 研究单元
      • 职能部门
      • 研究站
      • 挂靠机构
  • 科研成果
    • 研究领域
    • 科研进展
    • 科研产出
      • 获奖
      • 论文
      • 专著
      • 专利
  • 人才队伍
    • 院士专家
    • 正高级专业技术岗位
    • 副高级专业技术岗位
    • 中科院青年创新促进会会员
      • 2011
      • 2012
      • 2013
      • 2014
      • 2015
      • 2016
      • 2017
      • 2018
      • 2019
      • 2020
      • 2021
    • 特别研究助理及博士后管理
      • 博士后公告
      • 博士后规章
    • 人才招聘
  • 交流合作
    • 学术交流
    • 国际会议
    • 科技合作
      • 合作动态
      • 专利转让信息
      • 合作项目
  • 研究生教育
  • 党建与文化
    • 党群园地
    • 组织文化
    • 形象标识
    • 活动报道
    • 文化副刊
      • 诗歌
      • 书画
      • 摄影
      • 散文
  • 科学传播
    • 时间轴
    • 工作动态
    • 科普作品
      • 科普文章
      • 科普视频
      • 其他
    • 科技期刊
  • 信息公开
    • 信息公开规定
    • 信息公开指南
    • 信息公开目录
    • 信息公开申请
    • 信息公开年度报告
    • 信息公开联系方式
  • 重要新闻
  • 党建动态
  • 综合新闻
  • 媒体报道
  • 学术报告
  • 通知公告
  • 最美科学家
  • 专题
  • 专题
    • 中国科学院2022年度工作会
    • 2021年终科技盘点
    • 中国科学院“基础研究十条”
    • 十九届六中全会
    • 党史学习教育
    • 不忘初心牢记使命
    • 十九届五中全会
    • 率先行动
    • 两学一做
    • 防灾减灾
    • 十八届四中全会
    • 喜迎十八大
  • 快捷通道
    • OA系统
    • 继续教育网
    • ARP
    • 违法违纪举报
    • 所长信箱
    • 图书馆
    • 正版软件
    • 网站地图
  • 友情链接
    • 新闻媒体
    • 政府机构和组织
    • 国内院校
    • 国内科研机构
    • 国际科研机构
  • 网站纠错
科普作品
科普文章
科普视频
其他
科普文章
您当前的位置:
首页 科学传播 科普作品 科普文章

科普文章丨耳机里的声音为什么会有方向感?

发布时间:2020-12-22 作者:中科院噪声与振动重点实验室 王泰辉
【  小 中 大  】

  在影院看电影的时候,我们能感受到声音从我们的左边、右边、后边甚至是头顶传进我们的耳朵,从而给我们带来更好的听觉体验。这种能够使声音具有空间方向感的技术被称为环绕声技术,它能让听众体验到与现场几乎一致的声场。

  那么,如何才能实现这种环绕声技术呢?显然,最简单的思路是,在我们的耳朵四周放尽可能多的扬声器,这样不同的扬声器重放的声音能够让人耳感应到声音来自不同的位置,这也是电影院空间音频的设计思路。

  但是,对于个人来说,这样会增大我们的设备成本。与具有复杂音响设备的电影院不一样,我们的耳机只用左右两个扬声器也可以实现这种效果。这种用两个入耳式耳机发出空间中任意方向声音的技术被称为虚拟环绕声技术,也被称为沉浸式空间音频技术,是我们接下来要关注的重点。

  

  图片来源:WWDC 2020

  空间音频的目的是为了让人耳对重放的声音有更真实的空间感。因此,要深入了解空间音频技术,首先需要我们思考一个问题——人类是如何判断声音方向的呢?

  Part. 1

  人类双耳如何判断声音方向

  大家都知道,我们可以凭借一只耳朵来感受声音的响度、音调和音色。但是,如果想辨别出声音的方向,就要依靠两只耳朵了。原因在于两只耳朵才可以听出时间差和声级差。时间差是指声音抵达两只耳朵时间的前后差别,声级差则是两只耳朵听到声音能量的大小差别。

  比如在下图场景中,声源在我们的右边时,我们的右耳会先听到声音,之后声音才会到达左耳。声波在空气中的传播距离越长,能量会越来越小,因此右耳听到的声音能量要大于左耳。

  

  图片来源: Google I/O

  那么仅仅依靠时间差和声级差这两个因素,就可以实现声源在三维空间中的定位吗?

  别着急,先看看下面这个场景。

  如下图场景,当声音从我们的正前方和正后方发出的时候,到达双耳的时间差和能量差都是零。也就是说,当声音到达两耳的时间差和能量差都是零时,我们无法区分声音是从正前方来的,还是正后方来的。

  

  图片来源:Google I/O

  那么,问题又来了,双耳怎么辨别声音的前后方向?事实上,声音从发出到被我们的耳朵听到,经历了三个过程——传播过程、生理过程和心理过程 [1]。由于生理过程和心理过程几乎不可操控,在这里我们仅仅关注传播过程。

  传播过程也称为物理过程,是指声源发出的声波经由介质到达耳廓,再通过耳道传递到鼓膜并引起其振动的过程。这是一个极其复杂的过程,人耳廓构造的不同会使声波经由耳廓影响后形成的波形不尽相同。

  显然,正前方声源的传播过程和正后方声源的传播过程是不一样的!因为我们的耳朵并不是前后对称的。来自正前方的声音经过耳廓反射,可以直接进入耳道;而正后方的声音则需要绕过耳廓才能进入耳道。也正是由于这种不同,我们才可以分辨出声音来源的前后。

  

  图片来源:Google I/O

  耳廓相当于一个给声音进行“加密”的设备,而我们的大脑经过长时间的学习,已经完全掌握了这门“解密技术”,因此,可以轻而易举地听出声源的前后方位。

  现在,我们终于有了答案,双耳定位三维空间中声源的方向依赖于耳廓的“加密” [2,3]。

  Part. 2

  耳机的虚拟环绕声

  更加科学地讲,加密声音的不仅仅是耳廓,还有头部轮廓和肩膀等身体部位。由于这一系列的影响都与头部有关,因此这种加密方法也被研究人员称为:头相关函数(Head Related Transfer Function)[4,5]。

  头相关函数可以理解成我们头部对于声音的加密方法,这种加密是针对不同方位的。也正因为头部对于各个方向上的声音加密方式不一样,我们的大脑才可以解密出声音的方向。

  为了解密不同声源方位的加密方式,研究人员可以通过测量或者计算得到不同方向的头相关函数[4,6],然后组成一个数据库。

  

  图片来源:Veer图库

  我们戴上耳机之后,声音便直接经由耳道,被鼓膜接收了。失去了头部加密的过程,耳机内的声音听起来也就没有了方向感。

  但是,随着声信号处理技术的发展,我们可以通过在耳机内部置入电子设备,来模拟头部的加密过程。如果我们的电子设备与头相关函数的加密方法一致,那么经过电子设备加密之后的声音就可以被大脑解密出方位信息,成功地“欺骗”大脑。

  正是基于这样的思路,工程师们开发了基于头相关函数数据库的空间音频方法。他们用数字电路来模拟整个的头相关函数数据库,然后对耳机内的声音进行特定方向上的加密,这样,就能够让耳机内的声音听起来具有特定的方向感。

  

  图片来源:百度百科

  举例来说,在一场真实的音乐会上,小提琴在听众的左边45°,钢琴在听众的右边45°,无论是小提琴的声音,还是钢琴的声音,都能够经过听众的头部进行加密,现场声音听起来就有很好的方向感。

  如果线上的观众也想通过耳机获得身临其境的体验,那么耳机内部的数字电路可以选择左边45°的头相关函数来加密小提琴的声音,右边45°的头相关函数加密钢琴的声音,这样就能够“欺骗”大脑,让耳机内的声音听起来也有很好的方向感。

  由于这种声音不是从真实的空间中发出来,而是通过信号处理这样一种虚拟的方式“加密”出来的,所以被称为虚拟环绕声。

  近些年,随着耳机等可穿戴设备的应用越来越多,虚拟环绕声技术得到了大量的应用,也被科技公司称为沉浸式空间音频技术。

  参考文献

  [1] 俞胜锋. 基于脑电的双耳听觉定位的初步研究[D]. 华南理工大学, 2019.

  [2] 黄劲文, 杨飞然, 杨军. 头部跟踪器的虚拟声源定位系统[J]. 网络新媒体技术,2019,8(02):28-35.

  [3] Blauert J. Spatial hearing: the psychophysics of human sound localization[M]. MIT press, 1997.

  [4] 杨飞然. 头相关传递函数测试新方法[J]. 应用声学, 2014, 33(03): 263.

  [5] 谢菠荪. 头相关传输函数与虚拟听觉[M]. 国防工业出版社, 2008.

  [6] 胡红梅, 周琳, 马浩, 杨飞然, 吴镇扬. 耳机虚拟声系统的外部化方法[J]. 东南大学学报(自然科学版), 2008(01): 1-5.

  出品:科普中国

  制作:王泰辉

  (中科院声学所 中科院噪声与振动重点实验室)

  监制:中国科学院计算机网络信息中心

  (本文中标明来源的图片已获得授权)

  文章仅代表作者观点,不代表中国科普博览立场

  本文来源于“中国科普博览”公众号(kepubolan),转载请注明公众号出处

  


附件下载:

上一篇:

科普文章丨声学知识拍了拍你的哲学笔记本

下一篇:

科普文章丨嘿,siri!嘈杂的酒吧里,AI为什么听不懂指令?

旧版回顾 | 网站地图 | 联系我们
© 1996 - 2021 中国科学院声学研究所 版权所有备案序号:京ICP备16057196号
京公网安备110402500001号地址:北京市海淀区北四环西路21号中国科学院声学研究所
邮编:100190
官方微信