• OA系统
  • 图书馆
  • English
  • 中国科学院
  • 首页
  • 所况简介
    所况简介
    1964年,为落实国家声学规划,满足国家迫切需要,形成全国声学学科研究中心,经国务院副总理聂荣臻元帅批准,成立中国科学院声学研究所(以下简称声学所),将原中科院电子所的水声、超声、建筑声3个实验室,1958年成立的南海研究站、1960年成立的东海研究站、1961年成立的北海研究站整体纳入声学所。声学所是从事声学和信息处理技术研究的综...
    了解更多+
    现任领导
    李风华
    所长
    库卫群
    党委书记、副所长
    李明庚
    副所长(正局级)
    杨 军
    副所长
    杨 波
    副所长
    王 雷
    纪委书记
  • 机构设置
    领导机构
    所务会 党委会
    咨询机构
    学术委员会 学位评定委员会
    职能部门
    综合办公室 党委办公室 人力资源部 科技发展部 重大任务部 财务管理部 资产条件保障部 质量管理部 保密办公室 监督审计(纪委)办公室 造船办公室

    研究站
    南海研究站 东海研究站 北海研究站
    挂靠机构
    中国声学学会 全国声学标准化委员会 中国科学院声学计量站(CMA)
    研究单元
    声场声信息实验室
    水下环境信息感知实验室
    水下信息技术实验室
    海洋声学技术实验室
    水下航行器实验室
    超声学实验室
    噪声与音频声学实验室
    智能网络与信息处理技术实验室
    语音与智能信息处理实验室
    无人信息系统研究中心
  • 科研成果
    研究领域
    经过五十多年的发展,声学所形成了独具特色的六大研究领域:水声物理与水声探测技术、环境声学与噪声控制技术、超声学与声学微机电技术、通信声学和语言语音信息处理技术、声学与数字系统集成技术、高性能网络与网络新媒体技术。 【详情】
    成果概况
    获奖
    论文
    专利
    专著
    科研进展
    研究人员提出一种用于水下目标探测的无网格稀疏恢复距离-角度估计方法
    2025-06-20
    研究人员提出一种基于声阻抗效应的声表面波气体传感新方法
    2025-02-14
    声学所极地声学研究取得突破性进展
    2025-01-23
    研究人员在蜂窝结构中发现反常声传播特征并展示其在脱粘缺陷检测中的潜力
    2025-01-16
    声学所论文被评选为“2024年度中国高影响力数据论文”
    2024-12-11
    声学所王文团队论文获得Nature子刊2024年度热点论文奖
    2024-10-21
    中国科学院声学研究所语音与智能信息处理实验室团队在EUSIPCO 2024 LAP Challenge中夺冠
    2024-09-12
    研究人员提出面向网络加速的FPGA动态部分可重构方法
    2024-09-03
    研究人员提出逐符号运动补偿的256QAM水声通信方案
    2024-08-16
    研究人员提出基于深度学习的地层横波速度层析成像新方法
    2024-07-23
    研究人员利用零群速度特征提出一种复合蜂窝结构脱粘缺陷检测新方法
    2024-07-02
  • 人才队伍
    院士专家
    汪德昭
    马大猷
    应崇福
    张仁和
    侯朝焕
    李启虎
    汪承灏
    人才招聘
    更多+
    中国科学院声学研究所2025年特别研究助理(博士后)招聘启事
    2025-04-03
    中国科学院声学研究所2025年招聘启事
    2025-04-03
    中国科学院声学研究所资产条件保障部岗位招聘启事
    2025-03-18
    中国科学院声学研究所诚邀优秀青年人才申报2025年度海外优青项目
    2025-03-03
    中国科学院声学研究所监督审计(纪委)办公室管理岗位招聘启事
    2025-03-03
    正高级专业技术岗位
    副高级专业技术岗位
    中科院青年创新促进会会员
    特别研究助理及博士后管理
  • 研究生教育
  • 党建与文化
    活动报道
    更多+
    超声学党总支召开党员大会
    2025-06-18
    语音与智能信息处理党总支召开“筑防线、树新风”微党课
    2025-06-18
    水下航行器党总支第一党支部召开党员大会
    2025-06-18
    语音与智能信息处理党总支召开党员大会
    2025-06-18
    声学所党委举办深入贯彻中央八项规定精神学习教育读书班暨理论学习中心组集体学习会
    2025-06-04
  • 交流合作
    学术交流
    更多+
    声学所特别研究助理小组举办2025年度第2期学术交流活动
    2025-05-26
    声学所举行2025年第6期学术交流会
    2025-05-26
    声学所举行2025年第5期学术交流会
    2025-04-15
    声学所举行2025年第4期学术交流会
    2025-04-15
    声学所举行2025年第3期学术交流会
    2025-04-02
    科技合作
    更多+
    科技导报社调研声学所
    2025-03-10
    青岛市人大代表慈国庆参加市人大代表座谈会
    2024-03-27
    青岛高新区工委委员、管委副主任张建军调研北海研究站
    2023-12-04
    超快速高灵敏声表面波氢气传感器入选中国科协科研仪器优秀案例
    2023-03-28
    科技部社会发展科技司调研声学研究所相关工作
    2023-03-23
    国际会议
    更多+
  • 科学传播
    工作动态
    更多+
    科学之"声" 启迪未来——中国科学院声学研究所成功举办第二十一届公众科学日活动
    2025-05-20
    我们的耳朵——中国科学院青促会北京分会 “爱科学小课堂”第 23期科普活动在声学所举行
    2024-09-10
    北京市中关村中学走进北海站开展科学实践活动
    2024-07-15
    《中国医学影像技术》5T专刊在京发布 国内首次系统性地在学术期刊上介绍和展示世界首创的超高场5T磁共振技术
    2024-06-28
    声学所作品获评2023年度全国优秀科普微视频
    2024-04-01
    科技期刊
    科普文章
    更多+
    科普文章丨耳机里的声音为什么会有方向感?
    科普文章丨嘿,siri!嘈杂的酒吧里,AI为什么听不懂指令?
    科普文章丨神奇的主动降噪技术
    科普视频
    更多+
    科普视频丨杨波:揭秘“深海勇士号”载人潜水器
    科普视频丨声音的奥秘
    科普视频丨真空无法传声科普实验
    科普视频丨借声波一臂之力探神秘海底世界
  • 信息公开
    信息公开规定
    信息公开指南
    信息公开目录
    信息公开申请
    信息公开年度报告
    信息公开联系方式
  • 首页
  • 所况简介
    • 机构简介
    • 所长致辞
    • 现任领导
    • 历任主要领导
      • 历任所长
      • 历任党委书记
    • 院所风貌
  • 机构设置
    • 党的委员会
    • 学术委员会
    • 学位评定委员会
    • 组织机构
      • 领导机构
      • 咨询机构
      • 研究平台
        • 研究单元
        • 重点实验室(工程中心)
      • 职能部门
      • 研究站
      • 挂靠机构
  • 科研成果
    • 研究领域
    • 科研进展
    • 科研产出
      • 获奖
      • 论文
      • 专著
      • 专利
  • 人才队伍
    • 院士专家
    • 正高级专业技术岗位
    • 副高级专业技术岗位
    • 中科院青年创新促进会会员
      • 2011
      • 2012
      • 2013
      • 2014
      • 2015
      • 2016
      • 2017
      • 2018
      • 2019
      • 2020
      • 2021
    • 特别研究助理及博士后管理
      • 博士后公告
      • 博士后规章
    • 人才招聘
  • 交流合作
    • 学术交流
    • 国际会议
    • 科技合作
      • 合作动态
      • 专利转让信息
      • 合作项目
  • 研究生教育
  • 党建与文化
    • 党群园地
    • 组织文化
    • 形象标识
    • 活动报道
    • 文化副刊
      • 诗歌
      • 书画
      • 摄影
      • 散文
  • 科学传播
    • 时间轴
    • 工作动态
    • 科普作品
      • 科普文章
      • 科普视频
      • 其他
    • 科技期刊
  • 信息公开
    • 信息公开规定
    • 信息公开指南
    • 信息公开目录
    • 信息公开申请
    • 信息公开年度报告
    • 信息公开联系方式
  • 重要新闻
  • 党建动态
  • 综合新闻
  • 媒体报道
  • 学术报告
  • 通知公告
  • 最美科学家
  • 专题
  • 专题
    • 深入贯彻八项
    • 2025年全国两会
    • 学习贯彻党的二十届三中全会
    • 科技自立自强之路
    • 科学家精神教育基地
    • 2024年全国两会
    • 平语近人(第3季)
    • 中国科学院2024年度工作会议
    • 科技创新再出发
    • 学习贯彻习近平新时代中国特色社会主义思想主题教育
    • 学习两会精神
    • 学习宣传贯彻党的二十大精神
    • 中国科学院2022年度工作会
    • 2021年终科技盘点
    • 中国科学院“基础研究十条”
    • 十九届六中全会
    • 党史学习教育
    • 不忘初心牢记使命
    • 率先行动
    • 两学一做
    • 防灾减灾
    • 十八届四中全会
    • 喜迎十八大
    • 十九届五中全会
    • 深切缅怀汪承灏院士
      • 讣告
      • 汪承灏院士治丧委员会
      • 生平传记
      • 追忆悼念
      • 科研成果
      • 科学家精神
      • 音容笑貌
  • 快捷通道
    • OA系统
    • 继续教育网
    • ARP
    • 违法违纪举报
    • 信访渠道
    • 图书馆
    • 正版软件
    • 网站地图
  • 友情链接
    • 新闻媒体
    • 政府机构和组织
    • 国内院校
    • 国内科研机构
    • 国际科研机构
  • 网站纠错
科普作品
科普文章
科普视频
其他
科普文章
您当前的位置:
首页 科学传播 科普作品 科普文章

裁判必备的哨子,竟然来源于足球场上的一次意外

发布时间:2022-01-29 作者:赫兹科普社 张志博
【  小 中 大  】

  2022年冬奥会的脚步渐渐向我们走近,除了摩拳擦掌的运动员们,裁判的存在也十分引人注目。

  一声哨响,精彩登场!

  小小的哨子,吹响的是运动员的碰撞与激情,肩负的是体育的公平与公正,承载的是观众的关注与期望。

  

  (图片来源:央视网)

  小小的哨子是如何走上体育竞技场的?小身板如何拥有大嗓门?

  

  (图片来源:veer图库)

  裁判手里的哨子,其实来源于足球场上的一次意外

  最早的哨音来自于足球比赛。最开始的足球比赛,裁判员只是一个无足轻重、可有可无的角色,裁判没有哨子,控场基本靠吼。

  那么大的竞赛场所,中间是运动员的喧闹声,四周是球迷们的喝彩声和嘘叫声,裁判员的声音常常被嘈杂的声音覆盖,他不能进入运动场内,只能在场外大声吆喝、拼命喊叫。

  因此,比赛往往会出现这种场面:场外的裁判员声嘶力竭,场上的运动员毫无反应!大家来算算,当时裁判员的心理阴影面积有多大?

  1875年,在英国伦敦举行的一场足球赛中,由于意外的情况和偶然的巧合,产生了世界上最早的裁判哨音(划重点)。

  在这场比赛中,双方球员对一个进了球门的球是不是有效产生了争议。球迷们为了袒护自己声援的一方,纷纷涌进球场内,比赛也因此停滞,眼看有可能酿成一场大混战,如果不及时制止,就可能会出现人命事故。

  

  《股票口哨,伦敦,1909年一月》

  (图片来源:Bashny.Net)

  碰巧,担任这场比赛的裁判员是一名警察,面对混乱不堪的局面,出于警察的职业习惯,情急之下他吹响了警笛。闹事的观众们听到了警笛声,立刻自觉而迅速地退到了观众席上,运动员也顿时安静下来,整个球场的混乱秩序在警笛声吹响后很快便稳定下来。

  这种意想不到的效果,使人们认识到了哨子的作用,此后哨子便成为了裁判员的工具,并从足球比赛扩展到了其他项目的体育运动中。

  小小哨子,为什么能发出这么大的声音?

  哨子的历史悠久。早期人类即发现有孔的葫芦或兽骨可以发声,于是开始有了类似的乐器。古埃及人也曾把小贝壳制作成哨子。

  

  (图片来源:清和乐器博客)

  哨子是一种依靠边棱振动发声的气鸣乐器。气鸣乐器,顾名思义是指以空气为激振动力而发声的乐器。

  在气鸣乐器中,其发声方式主要有边棱音和簧振动两种。

  当气流以一定的角度冲击吹孔对面的锐棱,气流分隔为两股交替分裂的旋涡而形成空气层脉动,这个声源带被称为边棱音。

  

  边棱音产生示意图

  (图片来源:作者绘制)

  空腔则通过共振放大声音,也就是通常所说的“空气柱共振”。脉动的空气层犹如“空气簧”,激发管内空气柱共振,同时也受空气柱振动的影响。

  在相互影响中,呈现出一种“强者制约弱者”的现象。在此,空气柱振动强于柔软的“空气簧”,以致前者在较大程度上对后者起调制作用,将其频率强加于后者。

  这类乐器的声音,实际由两个声源(边棱音和空气柱共振)混合而成。而我们所听到的,主要是管出口端辐射的声音,其音高源自空气柱振动。

  

  笛子的发声原理

  (图片来源:作者绘制)

  而簧振动则是由簧片的振动而发音的。当气流进入簧片微张的缝口时,在气流压力影响下形成簧片周期性的闭合,从而激发空气柱产生振动。

  哨子的发声频率受多种因素影响,其中最主要的因素是哨子的形状。而在哨子的形状中,哨子内最大尺寸是主要因素。吹哨子时,流过哨子口的气流速度也会影响哨子的发声频率,气流速度越大,发声频率越高。此外,改变出气口尺寸也可以改变哨子的发声频率。

  

  篮球裁判

  (图片来源:新浪图片)

  从“豌豆哨”到“无核哨”:裁判哨子的进化史

  在现代体育赛场上,各种现代化、电气化的体育设施层出不穷,但裁判手中的哨子基本还像原来一样“朴实无华”。

  “豌豆哨”作为各种体育比赛的裁判用哨,已经有100多年的历史。它的原理十分简单:将软木加工成豌豆状小球,植入哨子体内,在吹奏时气流会形成边棱音。

  气流被哨子出口缝隙锋利的边缘分割成两部分,一股直接从缝隙冲出发出声音,另一股则在腔体内回旋并推动小球,当气流从缝隙冲出时就会再次加强声音。同时,小球的来回运动会扰动气流,使哨子发出独特的、清脆的声音。

  

  “豌豆哨”原理动画演示

  (图片来源:节选自西瓜视频《你真的知道哨子是这样做的吗》)

  但是,这种传统的“豌豆哨”也存在着弊端。

  其一,内部小球的运动限制了哨子发声的力度,在人声鼎沸的运动场上,哨音常常被现场的各种噪声所淹没,进而影响比赛的正常进行;

  其二,由于豌豆球的体积较小,如果小球被弄湿或冻住,就会影响其运动,从而影响哨音。

  如果吹哨时用力不当,很容易使豌豆球卡在哨壁中,导致哨子发不出声音,俗称“哑哨”。而这是比赛当中的重大事故,甚至会导致比赛中断。曾经有裁判就因为“哑哨”而遭到狂热球迷的殴打。

  于是,对“无豌豆”哨子的呼声越来越强烈。加拿大人查克·谢泼德(Chuck Shepherd)、罗恩·福克斯克罗夫特(Ron Foxcroft)等人,根据长期的摸索发现:

  要想发出和“豌豆哨”一样的声响,需要三个腔室,还分别需要一个高音、低音和中音部位,经过复杂的合奏,才能发出尖锐的声音。

  后来,他们从教堂管风琴的腔室中找到了灵感,摸清了设计原理,并造出了原型哨。

  

  三腔“无豌豆”哨的发声原理

  (图片来源:作者绘制)

  再后来,他们又想到了一个惊人的创意:将腔室像折纸一样折叠起来,这样便可以大大缩小哨子的体积,也使得它具有了实用性。

  腔室折叠后增强了声音传播的集中性,这样的哨子发音强度远大于传统的“豌豆哨”!现在,我们已经能在很多的大型比赛上看到这种“无豌豆”的哨子(也称无核哨)。

  

  三腔“无豌豆”哨(无核哨)实物

  (图片来源:FOX40官网)

  让我们共同期待北京冬奥赛场上那一声声嘹亮的哨音吧!

  

  本文由科普中国融合创作出品,张志博制作,中国科学院计算机网络信息中心监制,“科普中国”是中国科协携同社会各方利用信息化手段开展科学传播的科学权威品牌。


附件下载:

上一篇:

一图带你“听”懂汤加火山大爆发

下一篇:

科普文章丨声学知识拍了拍你的哲学笔记本

旧版回顾 | 网站地图 | 联系我们
© 1996 - 2021 中国科学院声学研究所 版权所有备案序号:京ICP备16057196号-1
京公网安备110402500001号地址:北京市海淀区北四环西路21号中国科学院声学研究所
邮编:100190
官方微信